August 2002
Graduate programs must be sensitive to the growth of science-based industries. Photo: Microsoft Office.
Every science student learns that a practice called the scientific method ensures that science is conducted with complete objectivity and a universally consistent way of interpreting data. With this inherent impartiality and collective ideology it is assumed that the method is being practiced and applied no matter where science is conducted. Conversely, contemporary science is split between two coexisting yet disparate worlds: the world of academic science and the world of commercial science.
Both follow the scientific method. However, academic science is conducted for the sake of knowledge while commercial science is done for marketable products. Although they both work within the same principles, they follow different sets of rules.
Science education for different worlds
As an undergraduate biology major, a student will quickly surmise that science involves memorizing and reiterating a host of facts and theories. Occasionally, there would be an excellent professor who taught how to enjoy the pure pursuit of knowledge about nature’s intricacies and mysteries. The more facts that are learned, the easier it is to comprehend increasingly esoteric phenomena.
- Science is not just learning about what is known.
- Its intention evolved from absorbing information about nature to constructing information through experimentation.
- Patience and persistence in applying the scientific method create a new level of excitement. This new pursuit alone appeared to be the major thrust of science as evident by the unshakable diligence of other professors and the early scientists who explored nature’s concealed truths.
Graduate school is an exercise in cognitive dissonance. Most graduate programs in science are viewed as the “end all” for the making of a scientist. They impart the essential proficiency needed to undertake either postdoctoral studies or a junior academic position. Originally, it seemed the destiny of being a scientist was to carry out research within the precincts of a personal laboratory. But that did not happen.
The supply and demand circumstances of academic positions in the middle 1980’s made it difficult to secure scholastic employment. So, many science graduates then and now ended up taking on positions as industrial scientists. This turned into a bigger exercise in cognitive discord than the transition from undergraduate to graduate studies.
Though industry does not hold the same value systems as academia, science is still enjoyable in both settings. But its pursuit in industry is restricted to short-term advances that could be turned into profitable commercial goods. A new set of skills had to be learned. At the same time, much of the ideology of graduate school had to be abandoned.
At first, the confusion and frustration of learning to cope with the first few months of industry makes new graduates curse their academic rearing. It is common to feel that 10 or more years of college did little to prepare them for the breadth of science careers. The knowledge of science gained in college may be excellent, but the acquaintance with “real world” job skills can be appallingly sparse. The last comment is not meant to disparage college science faculty as being inadequate or negligent mentors. They were raised in a different world and they instruct well for that environment.
Actually, many of the values learned in grade school help immensely with the transition to corporate life: be on time, listen, do as you are told, follow instructions, work efficiently with accuracy and alacrity, show your work, learn quickly from your mistakes, get along with others and be a team player.
Comparing skills needed for different circumstances
So, what are the specific differences between the academic science and commercial science proficiencies?
1. Project duration
At most universities, graduate research entails an involved project that can take several years to investigate. Completion of the entire project is the measure of success. Errors and unfruitful paths are part of the indoctrination process and are a vital learning experience. Wasted time at worst means delayed graduation.
Industrial science is another matter. Speed and first-time precision are critical elements of achievement. Projects that take several years to complete are the exception. Research and development (R&D) responsibilities dictate that several new or improved products and procedures are created within a year. Errors and fruitless pursuits are experiences to avoid. Wasted time means diminished profit and less chance of advancement.
2. Laboratory environments
Both academic and industrial science can be demanding and tense. But they fundamentally differ in the types of rules followed in the lab. Academic laboratories are hypothesis driven. There is a strong focus on project details. However, the major concern is ensuring that the steps and data are recorded correctly to ensure an accurate road to answering the hypothesis. Any modifications or new procedures developed during the project are carried out with no worries as long the experiment is designed to answer the hypothesis.
The industrial lab also involves tasks that follow prescribed laboratory protocols. However, proprietary laws and governmental regulations weigh its worth. Duties have to be performed with the added restrictions of current Good Laboratory Practices (cGLPs), and current Good Manufacturing Practices (cGMPs). The lab procedure book from the academic labs is now called a SOP (standard operating procedure). It cannot be modified even slightly without creating problems for the company.
3. Safety
Governmental and corporate rules must be followed without exception, unless alternatives are given for exceptional situations. The rules restrict flexibility in the industrial lab by limiting the types of procedures that can be conducted. Also, certain assays and procedures in industry have to be avoided because of the difficulties in storing or disposing of the volumes of material needed for the scope of the work. Some research faculty and academic colleagues feel that safety guidelines are a nuisance and, as a result, may take more personal risks in their less monitored environment.
4. Documentation
“Showing work” takes on a whole new meaning in the commercial science milieu. Laboratory notebooks in graduate school are simple and data driven. It serves as a personal guide to replicate the study if needed. Plus, it provides the template for writing the Methods and Materials section of a dissertation and any subsequent publications. In industry, the laboratory notebook becomes a legal document that exactingly follows prescribed documentation principles. Every minute detail must be recorded including the amount of time spent on certain steps, the serial numbers of laboratory equipment used, the amounts of any reagent that were taken but not used, and the lot numbers and expiration dates of every reagent that went into the procedure. Many times scientists must track the fate of even the most miniscule waste generated by protocols.
5. Intellectual property
In graduate school a student’s piece of research is gathered in a sheltered laboratory space, which is solely the domain of the student. The outcomes belong to the student. Any new ideas are the property of the student. Ideas are freely shared with colleagues because they offer valuable insights and the same joy of discovery. There is little fear of competition because students are working in their own self-centered worlds. The graduate student and academic investigator are also at liberty to borrow protocols developed by the labors of others as long as the correct acknowledgements are provided.
Again, industry is different. The labors of work belong to the company. Any ideas developed during employment are their property. The sharing of ideas is restricted to certain people within the company. Strict policies that prevent competitors from getting novel information must be exercised. There is also the concern of using a competitor’s proprietary information. Caution is needed before developing a strategy. So, serious efforts are needed to investigate who owned what ideas.
6. Performance
Personality and perseverance play a much bigger role in industry than in academic settings. Tardiness in graduate research is a personal problem. The effort put into research reflects only on the student and results in personal consequences that can be accepted if desired. This is not so in industry. In industry, the company will suffer from inadequate effort, so any job performance has to meet the stipulated expectations based on corporate goals and needs.
Changing perspectives in academic science
Academic science evolved in an environment fostering boundless creativity and unimpeded exploration. Commercial science grew up in a world of entrepreneurship. The principles for each work very well within their respective environments. However, many universities are desperately grasping the industrial model of conducting science:
- Biochemistry, genetics, synthetic chemistry and thermodynamics are now driving big profits in industry.
- Biotechnology in particular has proven itself a lucrative commercial endeavor. New discoveries can lead to highly marketable commodities. Some examples include polymerase chain reaction (PCR), herbicide-resistant genetically modified crops, and bioremediation.
- A number of academic researchers are learning the values of industry to protect and secure full ownership of their ideas for pending pecuniary gain. Tight research funding and the burgeoning cost of doing science may drive more researchers to seek financial benefits from their work. The chance for high profits from scientific endeavors has also caused an unprecedented growth in industrial science jobs.
Preparing students for science careers
Anyone involved in laboratory science education, from middle school up to comprehensive universities, must recognize the current magnitude of commercial science. Graduate programs in particular must be sensitive to the growth of science-based industries. Graduate students must be given the added value of skills that prepare them for commercial science ventures. An international study conducted in the United Kingdom stresses the importance of preparing graduate students for corporate careers in many fields.1
Unfortunately, only 62% of job applicants in the United States are taught the necessary skills for performing successfully in corporate jobs. These were the findings of the American Management Association and heralded as a call for better student preparation by the National Alliance of Business (NAB).2 I know from recent personal experience with managers in science industries that they would probably concur that the numbers cited by the NAB are lower for employees fresh out of graduate programs or postdoctoral studies in the sciences.
Science students must be taught basic job skills along with the traditional science methodology.
These employability skills should not be set apart, relegated as an ancillary to science education. Rather, the skills should be woven seamlessly into the day-to-day curriculum.
Lectures can emphasize the variety of science careers and the requisite skills needed for success in those fields.
The news is replete with examples of corporate failures due to key people failing to carry out the corporate ethos. Each laboratory session can be used as a vehicle for instilling accuracy, honesty and care in carrying out the work.
The Internet has some wonderful resources for seeking information on commercial science skills. These skills are not only useful in the workplace, but also translate into creating a complete person who will contribute to our democratic society.
The Occupational Outlook Handbook produced by the United States Department of Labor is a good starting point for getting general career information.3
The United States Department of Labor Secretary’s Commission on Achieving Necessary Skills (SCANS) released a 2000 report detailing workforce literacy skills that should be incorporated into the classroom.4
© 2002, American Institute of Biological Sciences. Educators have permission to reprint articles for classroom use; other users, please contact editor@actionbioscience.org for reprint permission. See reprint policy.